Optimal allocation of test times for reliability growth testing with interval-valued model parameters

2019 
Reliability growth testing is widely used to identify and remove failure modes in the development of complex systems. Different models have been proposed to track the progress of reliability growth during test, and previous research has addressed the improvement of after-testing system reliability by allocating limited testing resources. The majority of reliability growth testing models are based on the AMSAA/Crow model with known parameters, but there is a lack of work focusing on the situation when the AMSAA/Crow parameters are subject to uncertainty. In this article, we investigate a reliability growth testing allocation problem to series–parallel systems that considers parameter uncertainty in the AMSAA/Crow models. The model parameters are assumed to be known as uncertain-but-bounded values. Interval arithmetic and an interval order relation reflecting decision maker’s preference are used to analyze the uncertain parameters. In order to determine the optimal allocation of testing time for each compon...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    2
    Citations
    NaN
    KQI
    []