Large-Eddy Simulation for Turbine Heat Transfer

2013 
Heat transfer in a high-pressure turbine configuration (from an experiment documented in [1–2]) has been analyzed by means of large-eddy simulation. Blair’s large-scale rotating rig consists of a first stator, a rotor and an exit stator. Flow and heat transfer in the first stator are assessed for two configurations — with and without the presence of turbulence generating grid. A particular challenge here is that turbulence grid generates fairly high levels of inlet turbulence with turbulence intensity (TU) of about 10% just upstream of leading edge; this in turn moves the transition location upstream in a dramatic fashion. As far as the rotor blade is concerned, the flow and heat transfer is also analyzed experimentally for a range of incidence angles assessing the pressure side heat transfer increase at negative incidence angles. Several challenging aspects relevant to flow in the rotor are also considered — the three-dimensionality of pressure side flow separation at negative incidence, the impact of upstream stator wakes, as well as the role of surface roughness.Copyright © 2013 by United Technologies Corporation
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []