Elevated post-ischemic tissue injury and leukocyte-endothelial adhesive interactions in mice with global deficiency in caveolin-2: role of PAI-1.

2021 
Ischemia/reperfusion (I/R)-induced rapid inflammation involving activation of leukocyte-endothelial adhesive interactions and leukocyte infiltration into tissues is a major contributor to postischemic tissue injury. However, the molecular mediators involved in this pathological process are not fully known. We have previously reported that caveolin-2 (Cav-2), a protein component of plasma membrane caveolae, regulated leukocyte infiltration in mouse lung carcinoma tumors. The goal of the current study was to examine if Cav-2 plays a role in I/R injury and associated acute leukocyte-mediated inflammation. Using a mouse small intestinal I/R model, we demonstrated that I/R downregulates Cav-2 protein levels in the small bowel. Further study using Cav-2 deficient mice revealed aggravated postischemic tissue injury determined by scoring of villi length in H&E-stained tissue sections, which correlated with increased numbers of MPO-positive tissue-infiltrating leukocytes determined by IHC staining. Intravital microscopic analysis of upstream events relative to leukocyte transmigration and tissue infiltration revealed that leukocyte-endothelial cell adhesive interactions in postcapillary venules, namely leukocyte rolling and adhesion were also enhanced in Cav-2 deficient mice. Mechanistically, Cav-2 deficiency increased plasminogen activator inhibitor-1 (PAI-1) protein levels in the intestinal tissue and a pharmacological inhibition of PAI-1 had overall greater inhibitory effect on both aggravated I/R tissue injury and enhanced leukocyte-endothelial interactions in postcapillary venules in Cav-2 deficient mice. In conclusion, our data suggest that Cav-2 protein alleviates tissue injury in response to I/R by dampening PAI-1 protein levels and thereby reducing leukocyte-endothelial adhesive interactions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    1
    Citations
    NaN
    KQI
    []