IgA production requires B cell interaction with subepithelial dendritic cells in Peyer's patches.

2016 
INTRODUCTION Secretory immunoglobulin A (IgA) is made by intestinal plasma cells and has roles both in protection from gut pathogens and in maintaining homeostasis of intestinal commensals. Peyer’s patches (PPs)—the major organized lymphoid tissues of the small intestine, numbering 100 to 200 in humans and 6 to 12 in mice—are the dominant source of IgA-producing cells. A number of molecular factors have been identified that promote B cell switching from IgM to IgA, the best defined being transforming growth factor–β (TGFβ). TGFβ is made in a latent form and must be activated before it can induce TGFβ receptor (TGFβR) signaling. In this study, we explore the requirements for B cell IgA switching in PPs, concentrating on the location where it takes place and the key cell types involved. RATIONALE Mice deficient in the chemokine receptor CCR6 had been reported to mount poor IgA responses, but the mechanism responsible was unclear. The CCR6 ligand, CCL20, is abundant in the subepithelial dome (SED) of the PP, and one thought was that CCR6 was required for positioning dendritic cells (DCs) in the SED. However, CCR6 was known to be expressed by B cells and to be up-regulated following B cell activation. In this study, we have pursued the hypothesis that CCR6 is required within B cells to promote migration events and cellular interactions in the SED necessary for PP IgA responses. RESULTS Using bone marrow (BM) chimera and cell transfer approaches, we find that CCR6 expression in PP B cells is necessary for their efficient switching to IgA and for production of intestinal IgA against cholera toxin and commensal bacteria. Loss- and gain-of-function approaches establish that intrinsic CCR6 expression is necessary and sufficient for B cells to access the SED. CCR6 is up-regulated on pre–germinal center (GC) B cells in a CD40-dependent manner, and a transfer model indicates a more prominent role for CCR6 in T cell–dependent than in T cell–independent IgA responses. PP pre-GC B cells are shown to express IgA germline transcripts and activation-induced cytidine deaminase (AID), consistent with IgA switching initiating in this compartment. Using intravital two-photon microscopy, we find that B cells within the SED undergo prolonged interactions with DCs. Using BM chimera experiments and blocking reagents, we establish that SED DCs are dependent on the cytokine lymphotoxin-α1β2 (LTα1β2). RORγt + innate lymphoid cells (ILCs) are identified as a necessary source of this cytokine. Deficiency in LTβR-dependent DCs or RORγt-dependent ILCs results in reduced IgA + B cell frequencies in PPs. Reciprocally, transgenic overexpression of LTα1β2 increases SED DCs and IgA switching. We then examined how the SED DCs augment IgA switching and found that they abundantly expressed αvβ8, an integrin that has an established role in converting TGFβ from its latent to its active state. Experiments with Itgb8f/f Cd11c-Cre mice and with an αvβ8 blocking antibody established that DC αvβ8 expression was necessary for PP IgA switching. In vitro experiments provided further evidence that DC αvβ8 could directly activate TGFβ during DC–B cell interactions and showed that LTβR and retinoic acid signaling promote αvβ8 expression on DCs. CONCLUSION Our study defines a role for the PP SED as a niche that supports events necessary for IgA switching, in particular the induction of TGFβ activation, and it provides an example of a DC–B cell interaction acting to guide B cell fate. By defining a network of interactions required for IgA switching, this study identifies approaches that could be used to augment IgA responses while also defining sites for defects that could underlie IgA deficiency, the most common immune deficiency syndrome in humans.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    164
    Citations
    NaN
    KQI
    []