Quantitative self-organizing maps for clustering electron tomograms.
2002
Abstract Tomography emerges as a powerful methodology for determining the complex architectures of biological specimens that are better regarded from the structural point of view as singular entities. However, once the structure of a sufficiently large number of singular specimens is solved, quite possibly structural patterns start to emerge. This latter situation is addressed here, where the clustering of a set of 3D reconstructions using a novel quantitative approach is presented. In general terms, we propose a new variant of a self-organizing neural network for the unsupervised classification of 3D reconstructions. The novelty of the algorithm lies in its rigorous mathematical formulation that, starting from a large set of noisy input data, finds a set of “representative” items, organized onto an ordered output map, such that the probability density of this set of representative items resembles at its possible best the probability density of the input data. In this study, we evaluate the feasibility of application of the proposed neural approach to the problem of identifying similar 3D motifs within tomograms of insect flight muscle. Our experimental results prove that this technique is suitable for this type of problem, providing the electron microscopy community with a new tool for exploring large sets of tomogram data to find complex patterns.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
20
References
31
Citations
NaN
KQI