Conditional Antisense Oligonucleotides Triggered by miRNA.

2021 
Antisense oligonucleotides (ASOs) are single-stranded short nucleic acids that silence the expression of target mRNAs and show increasing therapeutic potential. Since ASOs are internalized by many cell types, both normal and diseased cells, gene silencing in unwanted cells is a significant challenge for their therapeutic use. To address this challenge, we created conditional ASOs that become active only upon detecting transcripts unique to the target cell. As a proof-of-concept, we modified an HIF1α ASO (EZN2968) to generate miRNA-specific conditional ASOs, which can inhibit HIF1α in the presence of a hepatocyte-specific miRNA, miR-122, via a toehold exchange reaction. We characterized a library of nucleic acids, testing how the conformation, thermostability, and chemical composition of the conditional ASO impact the specificity and efficacy in response to miR-122 as a trigger signal. Optimally designed conditional ASOs demonstrated knockdown of HIF1α in cells transfected with exogenous miR-122 and in hepatocytes expressing endogenous miR-122. We confirmed that conditional ASO activity was mediated by toehold exchange between miR-122 and the conditional ASO duplex, and the magnitude of the knockdown depended on the toehold length and miR-122 levels. Using the same concept, we further generated another conditional ASO that can be triggered by miR-21. Our results suggest that conditional ASOs can be custom-designed with any miRNA to control ASO activation in targeted cells while reducing unwanted effects in nontargeted cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []