Biogas Laminar Burning Velocity and Flammability Characteristics in Spark Ignited Premix Combustion

2013 
Spherically expanding flames propagating at constant pressure were employed to determine the laminar burning velocity and flammability characteristics of biogas-air mixtures in premixed combustion to uncover the fundamental flame propagation characteristics of a new alternative and renewable fuel. The results are compared with those from a methane-air flame. Biogas is a sustainable and renewable fuel that is produced in digestion facilities. The composition of biogas discussed in this paper consists of 66.4% methane, 30.6% carbon dioxide and 3% nitrogen. Burning velocity was measured at various equivalence ratios (ϕ) using a photographic technique in a high pressure fan-stirred bomb, the initial condition being at room temperature and atmospheric pressure. The flame for methane-air mixtures propagates from ϕ=0.6 till ϕ=1.3. The flame at ϕ≥1.4 does not propagate because the combustion reaction is quenched by the larger mass of fuel. At ϕ≤0.5, it does not propagate as well since the heat of reaction is insufficient to burn the mixtures. The flame for biogas-air mixtures propagates in a narrower range, that is from ϕ=0.6 to ϕ=1.2. Different from the methane flame, the biogas flame does not propagate at ϕ≥1.3 because the heat absorbed by inhibitors strengthens the quenching effect by the larger mass of fuel. As in the methane flame, the biogas flame at ϕ≤0.5 does not propagate. This shows that the effect of inhibitors in extremely lean mixtures is small. Compared to a methane-air mixture, the flammability characteristic (flammable region) of biogas becomes narrower in the presence of inhibitors (carbon dioxide and nitrogen) and the presence of inhibitors causes a reduction in the laminar burning velocity. The inhibitor gases work more effectively at rich mixtures because the rich biogas-air mixtures have a higher fraction of carbon dioxide and nitrogen components compared to the lean biogas-air mixtures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    27
    Citations
    NaN
    KQI
    []