Interferon-γ and tumor necrosis factor-α sensitize primarily resistant human endometrial stromal cells to Fas-mediated apoptosis

2007 
The subtle interaction between the implanting embryo and the maternal endometrium plays a pivotal role during the process of implantation. Human endometrial stromal cells (ESCs) express Fas and the implanting trophoblast cells secrete Fas ligand (FASLG, FasL), suggesting a possible role for Fas-mediated signaling during early implantation. Here we show that ESCs are primarily resistant to Fas-mediated apoptosis independently of their state of hormonal differentiation. Pre-treatment of ESCs with interferon (IFN)-γ and tumor necrosis factor (TNF)-α sensitizes them to become apoptotic upon stimulation of Fas by an agonistic anti-Fas antibody. Incubation of ESCs with the early embryonic signal human chorionic gonadotropin (hCG, CGB) does not influence their reaction to Fas stimulation. The sensitizing effect of IFN-γ and TNF-α was accompanied by a significant upregulation of Fas and FLICE-inhibitory protein (FLIP, CFLAR) expression in ESCs. Additionally, we observed an activation of caspase 3, caspase 8 and caspase 9 upon apoptotic Fas triggering. In summary, we demonstrate that IFN-γ and TNF-α sensitize primarily apoptosis-resistant ESCs to Fas-mediated cell death. This might be due to an upregulation of Fas expression, and apoptosis seems to be mediated by active caspase 3, caspase 8 and caspase 9. The observed pro-apoptotic effect of IFN-γ and TNF-α on ESCs could play an important role in the modulation of early implantation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    49
    Citations
    NaN
    KQI
    []