Dynamic embedding of salience coding in hippocampal spatial maps

2018 
Hippocampal CA1 neurons participate in dynamic ensemble codes for space and memory. Prominent features of the environment are represented by an increased density of place cells, but cellular principles governing the formation and plasticity of such disproportionate maps are unknown. We thus imaged experience-dependent long-term changes in spatial representations at the cellular level in the CA1 deep sublayer in mice learning to navigate in a virtual-reality environment. The maps were highly dynamic but gradually stabilized as over-representations for motivational (reward) and environmental (landmark) salience emerged in different time courses by selective consolidation of relevant spatial representations. Relocation of the reward extensively reorganized pre-formed maps by a mechanism involving rapid recruitment of cells from the previous location followed by their re-stabilization, indicating that a subset of neurons encode reward-related information. The distinct properties of these CA1 cells may provide a substrate by which salient experience forms lasting and adaptable memory traces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    7
    Citations
    NaN
    KQI
    []