Longitudinal Compressive Property of Three-Dimensional Four-Step Braided Composites after Cyclic Hygrothermal Aging under High Strain Rates

2020 
The longitudinal compressive behavior of the three-dimensional four-step braided composites after cyclic hygrothermal aging was investigated using a split Hopkinson pressure bar (SHPB) apparatus under high strain rates (1100~1250 s−1, 1400~1600 s−1, 1700~1850 s−1, respectively). The SEM micrographs were examined to the damage evolution of the composites after cyclic hygrothermal aging. A high-speed camera was employed to capture the progressive damage process for the composites. The results indicate that the saturated moisture absorption of the composites was not reached during the whole 210 cyclic hygrothermal aging days. The composites mainly underwent epoxy hydrolysis and interfaces debonding during continuous cyclic hygrothermal aging time. The peak stress of the composites still behaved as a strain rate effect after different cyclic hygrothermal aging days, but the dynamic stiffness modulus clearly had no specific regularity. In addition, the peak stress and the dynamic stiffness modulus of the composites after 210 cyclic hygrothermal aging days almost decreased by half when subjected to longitudinal compression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    1
    Citations
    NaN
    KQI
    []