Automatic myocardial segmentation in dynamic contrast enhanced perfusion MRI using Monte Carlo dropout in an encoder-decoder convolutional neural network
2019
Abstract Background and Objective Cardiac perfusion magnetic resonance imaging (MRI) with first pass dynamic contrast enhancement (DCE) is a useful tool to identify perfusion defects in myocardial tissues. Automatic segmentation of the myocardium can lead to efficient quantification of perfusion defects. The purpose of this study was to investigate the usefulness of uncertainty estimation in deep convolutional neural networks for automatic myocardial segmentation. Methods A U-Net segmentation model was trained on the cardiac cine data. Monte Carlo dropout sampling of the U-Net model was performed on the dynamic perfusion datasets frame-by-frame to estimate the standard deviation (SD) maps. The uncertainty estimate based on the sum of the SD values was used to select the optimal frames for endocardial and epicardial segmentations. DCE perfusion data from 35 subjects (14 subjects with coronary artery disease, 8 subjects with hypertrophic cardiomyopathy, and 13 healthy volunteers) were evaluated. The Dice similarity scores of the proposed method were compared with those of a semi-automatic U-Net segmentation method, which involved user selection of an image frame for segmentation in the cardiac perfusion dataset. Results The proposed method was fully automatic and did not require manual labeling of the cardiac perfusion image data for model development. The mean Dice similarity score of the proposed automatic method was 0.806 (±0.096), which was comparable to the 0.808 (±0.084) Dice score of the semi-automatic U-Net segmentation method (intraclass correlation coefficient = 0.61, P Conclusions Our study demonstrated the feasibility of applying an existing model trained on cardiac cine data to dynamic cardiac perfusion data to achieve robust and automatic segmentation of the myocardium. The uncertainty estimates can be used for screening purposes, which would facilitate the cases with high endocardial and epicardial uncertainty estimates to be sent for further evaluation and correction by human experts.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
31
References
7
Citations
NaN
KQI