Analysis of lncRNAs-miRNAs-mRNAs networks in periodontal ligament stem cells under mechanical force.

2020 
OBJECTIVES Our study aims to analyze the expression profiles of long non-coding RNAs (lncRNAs) and investigate the potential regulatory networks among lncRNAs, microRNAs (miRNAs) and mRNAs in periodontal ligament stem cells (PDLSCs) under mechanical force (MF). MATERIALS AND METHODS PDLSCs were isolated from human periodontal ligament tissues and identified by flow cytometry analysis. Multidirectional differentiation potential of PDLSCs was obtained by osteogenic and adipogenic induction. High-throughput RNA sequencing was used to identify the expression patterns of lncRNAs and mRNAs in PDLSCs under MF. MF-responsive miRNAs were obtained from the previous microarray data. LncRNAs-miRNAs-mRNAs networks were constructed by Cytoscape. RESULTS PDLSCs cultured from the periodontal ligament tissues were positive for STRO-1, CD146 and negative for CD45, CD34. Alizarin red staining and Oil Red O staining showed that PDLSCs had the ability of osteogenic and adipogenic differentiation. Then, a total of 1339 and 1426 differentially expressed lncRNAs and mRNAs were identified, respectively, in PDLSCs under MF. Based on the previous miRNA microarray analysis, the potential interaction networks of lncRNAs-miRNAs-mRNAs were constructed. It was found that lncRNAs and mRNAs could competitively interact with the same miRNA. CONCLUSIONS LncRNAs-miRNAs-mRNAs networks were involved in PDLSCs under MF, which might provide a novel mechanism in the regulation of clinical orthodontic tooth movement process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    2
    Citations
    NaN
    KQI
    []