EPO induces changes in synaptic transmission and plasticity in the dentate gyrus of rats

2016 
Erythropoietin has shown wide physiological effects on the central nervous system in animal models of disease, and in healthy animals. We have recently shown that systemic EPO administration 15 min, but not 5 h, after daily training in a water maze is able to induce the recovery of spatial memory in fimbria-fornix chronic-lesioned animals, suggesting that acute EPO triggers mechanisms which can modulate the active neural plasticity mechanism involved in spatial memory acquisition in lesioned animals. Additionally, this EPO effect is accompanied by the up-regulation of plasticity-related early genes. More remarkably, this time-dependent effects on learning recovery could signify that EPO in nerve system modulate specific living-cellular processes. In the present article, we focus on the question if EPO could modulate the induction of long-term synaptic plasticity like LTP and LTD, which presumably could support our previous published data. Our results show that acute EPO peripheral administration 15 min before the induction of synaptic plasticity is able to increase the magnitude of the LTP (more prominent in PSA than fEPSP-Slope) to facilitate the induction of LTD, and to protect LTP from depotentiation. These findings showing that EPO modulates in vivo synaptic plasticity sustain the assumption that EPO can act not only as a neuroprotective substance, but is also able to modulate transient neural plasticity mechanisms and therefore to promote the recovery of nerve function after an established chronic brain lesion. According to these results, EPO could be use as a molecular tool for neurorestaurative treatments. Synapse, 2016. © 2016 Wiley Periodicals, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    14
    Citations
    NaN
    KQI
    []