The second half of the fourth period of tropomyosin is a key region for Ca2+-dependent regulation of striated muscle thin filaments

2006 
Rabbit skeletal muscle α-tropomyosin (Tm), a 284-residue dimeric coiled-coil protein, spans seven actin monomers and contains seven quasiequivalent periods. X-ray analysis of cocrystals of Tm and troponin (Tn) placed the Tn core domain near residues 150-180 of Tm. To identify the Ca 2+ -sensitive Tn interaction site on Tm, we generated three Tm mutants to compare the consequences of sequence substitution inside and outside of the Tn core domain-binding region. Residues 152-165 and 156-162 in the second half of period 4 were replaced by corresponding residues 33-46 and 37-43 in the second half of period 1, respectively (termed mTml52-165 and mTml56-162, respectively), and residues 134-147 in the first half of period 4 were replaced with residues 15-28 in the first half of period 1 (mTml34-147). Recombinant Tms designed with an additional tripeptide, Ala-Ala-Ser, at the N-terminus were expressed in Escherichia coli. Both mTm152-165 and mTm156-162 suppressed the actin-activated myosin subfragment-1 Mg 2+ -ATPase rate regardless of whether Ca 2+ and Tn were present. On the other hand, mTm134-147 retained the normal Ca 2+ -sensitive regulation, although the actin binding of mTm alone was significantly impaired. Differential scanning calorimetry showed that the sequence substitution in the second half of period 4 affected the thermal stability of the complete Tm molecule and also the actin-induced stabilization. These results suggest that the second half of period 4 of Tm is a key region for inducing conformational changes of the regulated thin filament required for its fully activated state.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    16
    Citations
    NaN
    KQI
    []