Metallic Technetium Sequestration in Nickel Core/Shell Microstructure during Fe(OH)2 Transformation with Ni doping

2021 
Abstract This study investigates the impacts of Ni doping on technetium-99 (Tc) sequestration in aqueous solutions through transformation of Fe(OH)2(s) to iron spinel (magnetite) under alkaline conditions. Extensive solid characterization was performed for the mineral phases produced, as well as the Tc/Ni speciation and distribution within these phases. X-ray diffraction results show that iron spinel was the dominant mineral product without detectable Ni incorporation. The doped Ni ions mainly precipitated as fine Fe/Ni oxide/hydroxide particles, including strongly reduced nanometer˗sized spheroidal Ni-rich and metallic Ni phases. High-resolution analytical scanning transmission electron microscopy using energy dispersive X-ray spectroscopy and electron energy loss spectroscopy on the produced solid samples (focused ion beam-prepared specimens) revealed three Tc distribution domains dominated by nanocrystals and, especially, a Tc-rich metallic phase. Instances of metallic Tc were specifically found in spheroidal, Ni-rich and metallic nanoparticles exhibiting a core/shell microstructure that suggests strong reduction and sequential precipitation of Ni-Tc-Ni. Mass balance analysis showed nearly 100% Tc removal from the 4.8×10-4 M Tc solutions. The finding of the metallic Tc encapsulation indicates that Tc sequestration through Ni-doped Fe(OH)2(s)˗to˗iron spinel transformation process likely provides an alternative treatment pathway for Tc removal and could be combined into further waste treatment approaches.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []