A Unified Capacitive-Coupled Memristive Model forthe Nonpinched Current–Voltage Hysteresis Loop

2019 
The concept of the memristor, a resistor with memory, was proposed by Chua in 1971 as the fourth basic element of electric circuitry. Despite a significant amount of effort devoted to the understanding of memristor theory, our understanding of the nonpinched current–voltage (I–V) hysteresis loop in memristors remains incomplete. Here we propose a physical model of a memristor, with a capacitor connected in parallel, which explains how the nonpinched I–V hysteresis behavior originates from the capacitive-coupled memristive effect. Our model replicates eight types of characteristic nonlinear I–V behavior, which explains all observed nonpinched I–V curves seen in experiments. Furthermore, a reversible transition from a nonpinched I–V hysteresis loop to an ideal pinched I–V hysteresis loop is found, which explains the experimental data obtained in C15H11O6-based devices when subjected to an external stimulus (e.g., voltage, moisture, or temperature). Our results provide the vital physics models and materials ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    59
    Citations
    NaN
    KQI
    []