Dynamic estimation of specific fluxes in metabolic networks using non-linear dynamic optimization

2014 
Background Metabolic network models describing the biochemical reaction network and material fluxes inside microorganisms open interesting routes for the model-based optimization of bioprocesses. Dynamic metabolic flux analysis (dMFA) has lately been studied as an extension of regular metabolic flux analysis (MFA), rendering a dynamic view of the fluxes, also in non-stationary conditions. Recent dMFA implementations suffer from some drawbacks, though. More specifically, the fluxes are not estimated as specific fluxes, which are more biologically relevant. Also, the flux profiles are not smooth, and additional constraints like, e.g., irreversibility constraints on the fluxes, cannot be taken into account. Finally, in all previous methods, a basis for the null space of the stoichiometric matrix, i.e., which set of free fluxes is used, needs to be chosen. This choice is not trivial, and has a large influence on the resulting estimates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    15
    Citations
    NaN
    KQI
    []