Synthesis and biological activity of pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidin-4-one derivatives: in silico approach.

2010 
Xanthine oxidase (XO) is responsible for the pathological condition called gout. Inhibition of XO activity by various pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidine-4-one derivatives was assessed and compared with the standard inhibitor allopurinol. Out of 10 synthesized compounds, two compounds, viz. 3-amino-6-(2-hydroxyphenyl)-1H-pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidin-4-one (3b) and 3-amino-6-(4-chloro-2-hydroxy-5-methylphenyl)-1H-pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidin-4-one (3g) were found to have promising XO inhibitory activity of the same order as allopurinol. Both compounds and allopurinol inhibited competitively with comparable Ki (3b: 3.56 µg, 3g: 2.337 µg, allopurinol: 1.816 µg) and IC50 (3b: 4.228 µg, 3g: 3.1 µg, allopurinol: 2.9 µg) values. The enzyme–ligand interaction was studied by molecular docking using Autodock in BioMed Cache V. 6.1 software. The results revealed a significant dock score for 3b (−84.976 kcal/mol) and 3g (−90.921 kcal/mol) compared with allopurinol (−55.01 kcal/mol). The phy...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    19
    Citations
    NaN
    KQI
    []