Forebody vortex control with a wire-based DBD plasma actuator
2021
Forebody vortex control with a novel wire-based DBD (Dielectric Barrier Discharge) plasma actuator is studied by wind tunnel experiments in the present work. The configuration of the wire-based DBD plasma actuator, including the material and diameter of the exposed electrode, is optimized through thrust measurements in quiescent air. The results show that the DBD plasma actuator with a wire-based exposed electrode made from tungsten has the highest thrust efficiency, and with the reduction of the diameter from d = 0.3 mm to d = 0.08 mm, the thrust efficiency can be greatly improved. The optimal configuration of the wire-based DBD plasma actuator is used for the forebody vortex control through wind tunnel experiments. When the plasma control is not applied, results of the pressure and PIV measurements indicate that the flow field in the leeward zone is a distinct asymmetric vortex structure. Under plasma actuation, the asymmetric vortex structure can be symmetrical or even mirror asymmetric with respect to the case “plasma off”, and the control ability in the burst-mode actuation can be significantly improved compared to the steady operation. It is found that the forebody vortex control effect depends on the vortex structure of “plasma off”, which can be either symmetric or asymmetric. This study presents a new approach for the forebody vortex control with the wire-based DBD plasma actuator, which can further improve the aerodynamic flow control on aircrafts with slender bodies.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI