Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging.

2016 
Abstract With the increasing environmental application and discharge of iron-based nanoparticles (NPs), a comprehensive understanding of their fate and ecotoxicological effect in the aquatic environment is very urgent. In this study, toxicities of 4 zero-valent iron NPs (nZVI) of different sizes, 2 Fe 2 O 3 NPs of different crystal phases, and 1 type of Fe 3 O 4 NPs to a green alga ( Chlorella pyrenoidosa ) were investigated, with a focus on the effects of particle size, crystal phase, oxidation state, and environmental aging. Results show that the algal growth inhibition of nZVI increased significantly with decreasing particle size; with similar particle sizes (20–30 nm), the algal growth inhibition decreased with oxidation of the NPs with an order of nZVI > Fe 3 O 4 NPs > Fe 2 O 3 NPs, and α-Fe 2 O 3 NPs presented significantly higher toxicity than γ-Fe 2 O 3 NPs. The NP-induced oxidative stress was the main toxic mechanism, which could explain the difference in algal toxicity of the NPs. The NP-cell heteroagglomeration and physical interactions also contributed to the nanotoxicity, whereas the effect of NP dissolution was negligible. The aging in distilled water and 3 surface water samples for 3 months increased surface oxidation of the iron-based NPs especially nZVI, which decreased the toxicity to algae. These findings will be helpful for the understanding of the fate and toxicity of iron-based NPs in the aquatic environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    102
    Citations
    NaN
    KQI
    []