Analysis of stochastic Schottky barrier variations within printed high frequency rectifiers for harmonics generation

2019 
In this paper we investigate the stochastic Schottky barrier variations of printed distributed Schottky diodes consisting of a self-assembled arrangement of crystalline silicon microcones onto a metal layer. The microcone formation emerges from an inkjet printed Si nanoparticle film after laser sintering yielding a Schottky diode when a corresponding top metallization is applied. The elementary microcone diodes differ electrically in their barrier height, which is modelled as a gaussian distribution. The circuit simulation software Advanced Design System (ADS) is used to analyze the rectification abilities of the overall structure. The results show that a distributed barrier height leads to a smoother IV-characteristic, which can also be interpreted as an aggregated diode with a smaller turn on voltage. A Fourier analysis of the rectified time-domain signal shows an amplification of the frequency components up to the third harmonic in comparison to a non distributed single diode.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []