Biotransformation of Acetaminophen by intact cells and crude enzymes of bacteria: A comparative study and modelling
2019
Abstract Acetaminophen (APAP), which is an active ingredient of many analgesic drugs, is one of the contaminants of emerging concern in the environment. Although APAP is biodegradable, it is frequently detected in treatment plant effluents, surface water and soil suggesting that there are factors affecting the fate of APAP in the environment. In this study, four strains of bacteria that can degrade APAP were isolated from soil. Those strains belonged to Rhodococcus, Pseudomonas, Flavobacterium, and Sphingobium genera of Bacteria. A series of kinetic experiments were performed on the isolates in shake-flasks to determine biodegradation rate constant as well as the effect of temperature, APAP concentration and cell density on the biodegradation rates. APAP biodegradation follows the first order reaction kinetics which is coupled with cell growth. The specific APAP biodegradation rate constant (k) for all strains was similar and equal to 0.19 ± 0.01 h−1. The temperature, at which APAP biodegradation rate was maximum, was 35 °C. APAP biodegradation rate was linearly correlated with both the initial APAP concentration and the cell density. Initial step of the APAP biodegradation was hydrolysis of the amide bond which resulted in formation and accumulation of p-aminophenol suggesting that aryl acylamidase enzyme is responsible for the biotransformation. In addition, free and immobilized crude enzymes of the isolates transformed APAP at similar rates, comparable to the intact cells. This study showed that APAP biodegradation is achieved by a diverse group of bacteria having a similar enzyme operating at a constant kinetics which is very slow at environmentally relevant APAP concentrations. Natural removal of APAP in the environment is limited by kinetics, therefore APAP-bearing waste streams should be treated in adsorption enhanced biological systems before discharged into the environment.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
49
References
9
Citations
NaN
KQI