Mechanical properties of nanocrystalline copper produced by solution-phase synthesis
1996
Nanocrystalline copper powder was produced by a NaBH 4 reduction of CuCl in a simple solution phase room temperature reaction. Uniaxial hot pressing in a closed tungsten die was used to compact powder into dense specimens. Samples were analyzed by x-ray diffraction, precision densitometry, electron microscopy, energy dispersive x-ray analysis, and selected area diffraction. Mechanical properties of the consolidated samples were determined by microhardness measurements, three-point bending of rectangular specimens, and compression tests. Yield strength measured for nanocrystalline Cu in the present work was over two times that reported in literature for Cu with comparable grain size and over five times that of conventional Cu. Restricted grain growth observed in the hot-pressed samples and improved mechanical properties are attributed to the presence of boron. A unique method of obtaining homogeneous in situ nanosized reinforcements to strengthen the grain boundaries in nanocrystalline materials is identified.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
33
References
57
Citations
NaN
KQI