Scale-free structure of cancer networks and their vulnerability to hub-directed combination therapy

2020 
Background: The effectiveness of many targeted therapies is limited by toxicity and the rise of drug resistance. A growing appreciation of the inherent redundancies of cancer signaling has led to a rise in the number of combination therapies under development, but a better understanding of the overall cancer network topology would provide a conceptual framework for choosing effective combination partners. In this work, we explore the scale-free nature of cancer protein-protein interaction networks in 14 indications. Scale-free networks, characterized by a power-law degree distribution, are known to be resilient to random attack on their nodes, yet vulnerable to directed attacks on their hubs (their most highly connected nodes). Results: Consistent with the properties of scale-free networks, we find that lethal genes are associated with ~5-fold higher protein connectivity partners than non-lethal genes. This provides a biological rationale for a hub-centered combination attack. Our simulations show that combinations targeting hubs can efficiently disrupt 50% of network integrity by inhibiting less than 1% of the connected proteins, whereas a random attack can require inhibition of more than 30% of the connected proteins. Conclusions: We find that the scale-free nature of cancer networks makes them vulnerable to focused attack on their highly connected protein hubs. Thus, we propose a new strategy for designing combination therapies by targeting hubs in cancer networks that are not associated with relevant toxicity networks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []