Immunochemical characterization of polyclonal and monoclonal Streptococcus group A antibodies by chemically defined glycoconjugates and synthetic oligosaccharides.

1992 
Abstract Synthetic oligosaccharides of increasing complexity that represent different epitodes of the Streptococcus Group A cell-wall polysaccharide were used as haptens and glycoconjugates of bovine serum albumin (BSA) and horse hemoglobin (HHb) to characterize polyclonal and monoclonal antibodies. Rabbits were immunized with the BSA glycoconjugates of a linear trisaccharide, branched trisaccharide, and branched pentasaccharide. The binding specificities of the polyclonal antisera were determined by a series of inhibition ELISA studies in which disaccharide through pentasaccharide haptens were used as inhibitors of antibody-glycoconjugate binding. Monoclonal antibodies derived from mice immunized with a killed bacterial vaccine were selected for their binding to native polysaccharide antigen coupled to BSA and the BSA glycoconjugates of the di- and linear tri-saccharides. Polyclonal antibodies were moderately specific for the oligosaccharide epitope of the immunizing glycoconjugate and only those antibodies raised to the branched pentasaccharide antigen showed cross-reaction with the bacterial antigen. The behaviour of selected monoclonal antibodies parallels the binding profile of polyclonal antibodies in that the two highest-titre antibodies were directed toward an epitope displayed by the branched pentasaccharide.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    29
    Citations
    NaN
    KQI
    []