From MFM Capacitors Toward Ferroelectric Transistors: Endurance and Disturb Characteristics of ${\rm HfO}_{2}$ -Based FeFET Devices

2013 
Ferroelectric Si:HfO 2 has been investigated starting from metal-ferroelectric-metal (MFM) capacitors over metal-ferroelectric-insulator-semiconductor (MFIS) and finally ferroelectric field-effect-transistor (FeFET) devices. Endurance characteristics and field cycling effects recognized for the material itself are shown to also translate to highly scaled 30-nm FeFET devices. Positive-up negative-down as well as pulsed I d -V g measurements illustrate how ferroelectric material characteristics of MFM capacitors can also be identified in more complex MFIS and FeFET structures. Antiferroelectric-like characteristics observed for relatively high Si dopant concentration reveal significant trapping superimposed onto the ferroelectric memory window limiting the general program/erase endurance of the devices to 10 4 cycles. In addition, worst case disturb scenarios for a VDD/2 and VDD/3 scheme are evaluated to prove the viability of one-transistor memory cell concepts. The ability to tailor the ferroelectric properties by appropriate dopant concentration reveals disturb resilience up to 10 6 disturb cycles while maintaining an I ON to I OFF ratio of more than four orders of magnitude.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    66
    Citations
    NaN
    KQI
    []