Field-mediated locomotor dynamics on highly deformable surfaces

2020 
In many systems motion occurs on deformed and deformable surfaces, setting up the possibility for dynamical interactions solely mediated by the coupling of the entities with their environment. Here we study the "two-body" dynamics of robot locomotion on a highly deformable spandex membrane in two scenarios: one in which a robot orbits a large central depression and the other where the two robots affect each other's motion solely through mutual environmental deformations. Inspired by the resemblance of the orbits of the single robot with those of general relativistic orbits around black holes, we recast the vehicle plus membrane dynamics in physical space into the geodesic motion of a "test particle" in a fiducial curved space-time and demonstrate how this framework facilitates understanding the observed dynamics. The two-robot problem also exhibits a resemblance with Einstein's general relativistic view of gravity, which in the words of Wheeler: "spacetime tells matter how to move; matter tells spacetime how to curve." We generalize this case the mapping to include a reciprocal coupling that translates into robotic curvature-based control schemes which modify interaction (promoting avoidance or aggregation) without long-range sensing. Our work provides a starting point for developing a mechanical analog gravity system as well as develops a framework that can provide insights into active matter in deformable environments and robot exploration in complex landscapes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    0
    Citations
    NaN
    KQI
    []