Hydrogen Production from Glycerol Photoreforming on TiO2/HKUST-1 Composites: Effect of Preparation Method

2019 
Coupling metal-organic frameworks (MOFs) with inorganic semiconductors has been successfully tested in a variety of photocatalytic reactions. In this work we present the synthesis of TiO2/HKUST-1 composites by grinding, solvothermal, and chemical methods, using different TiO2 loadings. These composites were used as photocatalysts for hydrogen production by the photoreforming of a glycerol-water mixture under simulated solar light. Several characterization techniques were employed, including X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), infrared spectroscopy (FTIR), and time-resolved microwave conductivity (TRMC). A synergetic effect was observed with all TiO2/HKUST-1 composites (mass ratio TiO2/MOF 1:1), which presented higher photocatalytic activity than that of individual components. These results were explained in terms of an inhibition of the charge carrier (hole-electron) recombination reaction after photoexcitation, favoring the electron transfer from TiO2 to the MOF and creating reversible Cu1+/Cu0 entities useful for hydrogen production.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    12
    Citations
    NaN
    KQI
    []