Mechanism and Optimized Process Conditions of Forming One-Dimensional ZnO Nanorods with Al-Doping by Electrodeposition Method
2021
Textured transparent conductive electrodes for thin-film solar cells have been considered as an effective route for enhancing sunlight harvest due to light trapping. Here, we report a self-assembling electrochemical approach for preparing Al-doped ZnO nanorod arrays (NRAs) as light-trapping electrodes from a mixed aqueous solution of zinc nitrate and aluminium nitrate. The mechanism and optimized process conditions of forming one-dimensional ZnO nanorods with Al-doping were systematically investigated. The results showed that Al atoms were successfully doped into ZnO crystal lattice, and the morphologies could be controlled by adjusting the Al3+/Zn2+ ratio in the precursors and deposition time. The Al-doped ZnO films grew into well-aligned hexagonal NRAs with c-axis perpendicular to the substrates and then transited into a mixture of nanosheets and nanorods with Al3+/Zn2+ ratio increasing. They exhibited good electrical conductivity with a sheet resistance of 68-167Ω/square and appropriate visible light transmittance of 61-82%. Taking into account of desired morphology and phase purity, as well as good electrical conductivity and optical transmittance, the optimal window of Al3+/Zn2+ ratio in the precursors was determined between 1 at% and 2 at% with applied potential of -1.5V, bath temperature of 80°C, and deposition time of about 30min. The electrodeposition method provides a facile and efficient route for obtaining large-area textured transparent electrodes at a low cost.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
51
References
0
Citations
NaN
KQI