Verification of directed self-assembly (DSA) guide patterns through machine learning

2015 
Verification of full-chip DSA guide patterns (GPs) through simulations is not practical due to long runtime. We develop a decision function (or functions), which receives n geometry parameters of a GP as inputs and predicts whether the GP faithfully produces desired contacts (good) or not (bad). We take a few sample GPs to construct the function; DSA simulations are performed for each GP to decide whether it is good or bad, and the decision is marked in n -dimensional space. The hyper-plane that separates good marks and bad marks in that space is determined through machine learning process, and corresponds to our decision function. We try a single global function that can be applied to any GP types, and a series of functions in which each function is customized for different GP type; they are then compared and assessed in 10nm technology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    3
    Citations
    NaN
    KQI
    []