Entorhinal cortex contribution to contextual fear conditioning extinction and reconsolidation in rats.

2014 
Abstract During contextual fear conditioning a rat learns a temporal contiguity association between the exposition to a previously neutral context (CS) and an aversive unconditioned stimulus (US) as a footshock. This condition determines in the rat the freezing reaction during the subsequent re-exposition to the context. Potentially the re-exposition without US presentation initiates two opposing and competing processes: reconsolidation and extinction. Reconsolidation process re-stabilizes and strengthens the original memory and it is initiated by a brief re-exposure to context. Instead the extinction process leads to the decrease of the expression of the original memory and it is triggered by prolonged re-exposure to the context. Here we analyzed the entorhinal cortex (ENT) participation in contextual fear conditioning reconsolidation and extinction. The rats were trained in contextual fear conditioning and 24 h later they were subjected either to a brief (2 min) reactivation session or to a prolonged (120 min) re-exposition to context to induce extinction of the contextual fear memory. Immediately after the reactivation or the extinction session, the animals were submitted to bilateral ENT TTX inactivation. Memory retention was assessed as conditioned freezing duration measured 72 h after TTX administration. The results showed that ENT inactivation both after reactivation and extinction session was followed by contextual freezing retention impairment. Thus, the present findings point out that ENT is involved in contextual fear memory reconsolidation and extinction. This neural structure might be part of parallel circuits underlying two phases of contextual fear memory processing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    102
    References
    16
    Citations
    NaN
    KQI
    []