Fast Optimization of Wildfire Suppression Policies with SMAC.

2017 
Managers of US National Forests must decide what policy to apply for dealing with lightning-caused wildfires. Conflicts among stakeholders (e.g., timber companies, home owners, and wildlife biologists) have often led to spirited political debates and even violent eco-terrorism. One way to transform these conflicts into multi-stakeholder negotiations is to provide a high-fidelity simulation environment in which stakeholders can explore the space of alternative policies and understand the tradeoffs therein. Such an environment needs to support fast optimization of MDP policies so that users can adjust reward functions and analyze the resulting optimal policies. This paper assesses the suitability of SMAC---a black-box empirical function optimization algorithm---for rapid optimization of MDP policies. The paper describes five reward function components and four stakeholder constituencies. It then introduces a parameterized class of policies that can be easily understood by the stakeholders. SMAC is applied to find the optimal policy in this class for the reward functions of each of the stakeholder constituencies. The results confirm that SMAC is able to rapidly find good policies that make sense from the domain perspective. Because the full-fidelity forest fire simulator is far too expensive to support interactive optimization, SMAC is applied to a surrogate model constructed from a modest number of runs of the full-fidelity simulator. To check the quality of the SMAC-optimized policies, the policies are evaluated on the full-fidelity simulator. The results confirm that the surrogate values estimates are valid. This is the first successful optimization of wildfire management policies using a full-fidelity simulation. The same methodology should be applicable to other contentious natural resource management problems where high-fidelity simulation is extremely expensive.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    1
    Citations
    NaN
    KQI
    []