Raman-scattering study of the phonon dispersion in twisted bi-layer graphene

2013 
Bi-layer graphene with a twist angle \theta\ between the layers generates a superlattice structure known as Moir\'{e} pattern. This superlattice provides a \theta-dependent q wavevector that activates phonons in the interior of the Brillouin zone. Here we show that this superlattice-induced Raman scattering can be used to probe the phonon dispersion in twisted bi-layer graphene (tBLG). The effect reported here is different from the broadly studied double-resonance in graphene-related materials in many aspects, and despite the absence of stacking order in tBLG, layer breathing vibrations (namely ZO' phonons) are observed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    62
    Citations
    NaN
    KQI
    []