Cardiopulmonary mortality and COPD attributed to ambient ozone

2017 
Abstract Tropospheric ozone is the second most important atmospheric pollutant after particulate matter with respect to its impact on human health and is increasing of its concentrations globally. The main objective of this study was to assess of health effects attributable to ground-level ozone (O 3 ) in Kermanshah, Iran using one-hour O 3 concentrations measured between March 2014 and March 2015. The AirQ program was applied for estimation of the numbers of cardiovascular mortality (CM), respiratory mortality (RM), and hospital admissions for chronic obstructive pulmonary disease (HA-COPD) using relative risk (RR) and baseline incidence (BI) as defined by the World Health Organization (WHO). The largest percentage of person-days for different O 3 concentrations was in the concentration range of 30–39 µg/m 3 . The health modeling results suggested that ~2% (95% CI: 0–2.9%) of cardiovascular mortality, 5.9% (95% CI: 2.3–9.4) of respiratory mortality, and 4.1% (CI: 2.5–6.1%) of the HA-COPD were attributed to O 3 concentrations higher than 10 µg/m 3 . For each 10 µg/m 3 increase in O 3 concentration, the risk of cardiovascular mortality, respiratory mortality, and HA-COPD increased by 0.40%, 1.25%, and 0.86%, respectively. Furthermore, 88.8% of health effects occurred on days with O 3 level less than 100 µg/m 3 . Thus, action is needed to reduce the emissions of O 3 precursors especially transport and energy production in Kermanshah.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    42
    Citations
    NaN
    KQI
    []