Deep learning-based automated underground cavity detection using three-dimensional ground penetrating radar

2019 
Three-dimensional ground penetrating radar data are often ambiguous and complex to interpret when attempting to detect only underground cavities because ground penetrating radar reflections from various underground objects can appear like those from cavities. In this study, we tackle the issue of ambiguity by proposing a system based on deep convolutional neural networks, which is capable of autonomous underground cavity detection beneath urban roads using three-dimensional ground penetrating radar data. First, a basis pursuit-based background filtering algorithm is developed to enhance the visibility of underground objects. The deep convolutional neural network is then established and applied to automatically classify underground objects using the filtered three-dimensional ground penetrating radar data as represented by three types of images: A-, B-, and C-scans. In this study, we utilize a novel two-dimensional grid image consisting of several B- and C-scan images. Cavity, pipe, manhole, and intact fea...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    13
    Citations
    NaN
    KQI
    []