Impact of axial ligation on photophysical and photodynamic antimicrobial properties of indium (III) methylsulfanylphenyl porphyrin complexes linked to silver-capped copper ferrite magnetic nanoparticles

2021 
Abstract Photodynamic antimicrobial chemotherapy (PACT) is a well-known technique used against bacteria that have developed resistance towards antibiotics. We herein report the synthesis, photophysical properties, and PACT activity of 2-hydroxypyridine axial ligated indium 5,10,15,20-tetrakis-(4-phenylmethylthio) porphyrin (3) and quaternized 2-hydroxypyridine axial ligated indium 5,10,15,20-tetrakis-(4-phenylmethylthio) porphyrin (4). The porphyrin complexes (3 and 4) were further linked to oleyamine (OLM)/oleic acid (OLA) capped Ag/CuFe2O4 and also 6-mercapto-1-hexanol functionalized (MCH-Ag/CuFe2O4) nanoparticles through silver - sulphur (Ag-S) and silver-nitrogen (Ag-N); self-assembly. The PACT studies were carried out using Staphylococcus aureus. While all the synthesized porphyrins demonstrated PACT activity, the quaternized complex and its conjugate showed the highest PACT activity with 0% cell viability after irradiation for 25 min, resulting in a log reduction of 8.31.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    2
    Citations
    NaN
    KQI
    []