A novel role for the Aurora B kinase in epigenetic marking of silent chromatin in differentiated postmitotic cells This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits distribution, and reproduction in any medium, provided the original author and source are credited. This license does not permit commercial exploitation or the creation of derivative works without specific permission.

2007 
Combinatorial modifications of the core histones have the potential to fine-tune the epigenetic regulation of chromatin states. The Aurora B kinase is responsible for generating the double histone H3 modification tri-methylated K9/ phosphorylated S10 (H3K9me3/S10ph), which has been implicated in chromosome condensation during mitosis. In this study, we have identified a novel role for Aurora B in epigenetic marking of silent chromatin during cell differentiation. We find that phosphorylation of H3 S10 by Aurora B generates high levels of the double H3K9me3/ S10ph modification in differentiated postmitotic cells and also results in delocalisation of HP1b away from heterochromatin in terminally differentiated plasma cells. Microarray analysis of the H3K9me3/S10ph modification shows a striking increase in the modification across repressed genes during differentiation of mesenchymal stem cells. Our results provide evidence that the Aurora B kinase has a role in marking silent chromatin independently of the cell cycle and suggest that targeting of Aurora B-mediated phosphorylation of H3 S10 to repressed genes could be a mechanism for epigenetic silencing of
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []