Genetic variants in the candidate genes of the apoptosis pathway and susceptibility to chronic myeloid leukemia

2009 
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder, characterized by the presence of BCR/ABL fusion gene. It is unclear which cellular events drive BCR/ABL gene translocation or initiate leukemogenesis in CML. Bcl-2 promotes survival of hematopoietic stem cells. Accordingly, apoptosis-related pathway may involve in the leukemogenesis of CML. In the current study, we evaluated 80 single nucleotide polymorphism (SNP) markers involved in the pathways of apoptosis (n = 30), angiogenesis (n = 7), myeloid cell growth (n = 14), xenobiotic metabolism (n = 13), WT1 signaling (n = 7), interferon signaling (n = 4), and others (n = 5) in 170 CML patients and 182 healthy controls. In a single-marker analysis, the following SNPs were identified including VEGFA , BCL2 , CASP7 , JAK3 , CSF3 , and HOCT1 . In the multivariate logistic model with these SNPs and covariates, only BCL2 (rs1801018) was significantly associated with the susceptibility to CML ( P = .05; odds ratio [OR] 2.16 [1.00-4.68]). In haplotype analyses, haplotype block of BCL2 consistently showed significant association with the susceptibility to CML. Risk allele analysis showed that a greater number of risk alleles from BCL2 SNP correlated to increasing risk of CML (overall P = .1, OR 1.84 [1.06-3.22] for 3-4 risk alleles vs 0-1 risk alleles). The current study indicated that BCL2 SNP seemed to be associated with increasing susceptibility to CML.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    35
    Citations
    NaN
    KQI
    []