Respiration rates of individual bovine in vitro-produced embryos measured with a novel, non-invasive and highly sensitive microsensor system

2005 
Oxygen consumption is a useful parameter for evaluating embryo quality, since it provides a valuable indication of overall metabolic activity. Over the years, several approaches have been used to measure the respiration rates of individual embryos, but a convincing method has not yet been reported. In this study, we introduce and have validated a novel high resolution microsensor technology to determine the respiration rates of individual embryos at different developmental stages. We have employed this technology to investigate the correlation between respiration rate and embryo morphology, diameter and sex. Following morphological evaluation, individual respiration rates of day 3 (n = 18) and day 7 (n = 60) bovine in vitro-produced embryos were determined. Of the measured embryos, 64 were lysed for sex diagnosis by PCR. Average respiration rates of day 7 embryos (1.30 ± 0.064 nl/h) were 3.4-fold higher than day 3 embryos (0.38 ± 0.011 nl/h). On day 7, the average respiration rate of quality 1 blastocysts was significantly higher than the respiration rates of the lower qualities. For both day 3 and day 7 embryos, respiration rates were directly influenced by embryo diameter but did not differ between sexes. These results have demonstrated that the novel microsensor technology can be used to accurately and rapidly (8 min) measure the respiration rates of individual embryos at different developmental stages. Respiration rates were only in partial agreement with embryo morphology, suggesting a slight discrepancy between these two methods in assessing embryo quality. It is likely that a combined assessment of embryo respiration and morphology would improve embryo classification and subsequent selection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    79
    Citations
    NaN
    KQI
    []