Nanotube-modified dentin adhesive--physicochemical and dentin bonding characterizations.

2013 
Abstract Objective The aim of this study was to investigate the effect of aluminosilicate clay nanotubes (Halloysite, HNT) incorporated into the adhesive resin of a commercially available three-step etch and rinse bonding system (Adper Scotchbond Multi-Purpose/SBMP) on dentin bond strength, as well as the effect on several key physicochemical properties of the modified adhesive. Methods Experimental adhesives were prepared by adding five distinct HNT amounts (5–30 wt.%) into the adhesive resin (w/v) of the SBMP dentin bonding system. Bond strength to human dentin, microhardness, and degree of conversion (DC) of the modified adhesives were assessed. Results From the shear bond strength data, it was determined that HNT incorporation at a concentration of 30 wt.% resulted in the highest bond strength to dentin that was statistically significant ( p  = 0.025) when compared to the control. Even though a significant increase in microhardness ( p p Significance It was concluded that HNT can be incorporated up to 20 wt.% without jeopardizing important physicochemical properties of the adhesive. The modification of the SBMP dentin bonding agent with 20 wt.% HNT appears to hold great potential toward contributing to a durable dentin bond; not only from the possibility of strengthening the bond interface, but also due to HNT intrinsic capability of encapsulating therapeutic agents such as matrix metalloproteinase (MMP) inhibitors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    26
    Citations
    NaN
    KQI
    []