High fidelity neuronal networks formed by plasma masking with a bilayer membrane: analysis of neurodegenerative and neuroprotective processes
2011
Spatially defined neuronal networks have great potential to be used in a wide spectrum of neurobiology assays. We present an original technique for the precise and reproducible formation of neuronal networks. A PDMS membrane comprising through-holes aligned with interconnecting microchannels was used during oxygen plasma etching to dry mask a protein rejecting poly(ethylene glycol) (PEG) adlayer. Patterns were faithfully replicated to produce an oxidized interconnected array pattern which supported protein adsorption. Differentiated human SH-SY5Y neuron-like cells adhered to the array nodes with the micron-scale interconnecting tracks guiding neurite outgrowth to produce neuronal connections and establish a network. A 2.0 μm track width was optimal for high-level network formation and node compliance. These spatially standardized neuronal networks were used to analyse the dynamics of acrylamide-induced neurite degeneration and the protective effects of co-treatment with calpeptin or brain derived neurotrophic factor (BDNF).
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
65
References
45
Citations
NaN
KQI