Molecular mechanisms of oridonin-induced apoptosis and autophagy in murine fibrosarcoma L929 cells

2009 
Apoptosis and autophagy are genetically regulated, evolutionarily-conserved processes that can jointly seal the fate of cancer cells; however, substantial gaps remain in our understanding of the molecular mechanisms that mediate the two cellular processes. In the present study, the exposure of murine fibrosarcoma L929 cells to oridonin led to the generation of intracellular reactive oxygen species (ROS) and, subsequently, the ROS triggered apoptosis by Bax translocation, cytochrome c release and ERK activations. In addition, oridonin induced autophagy in L929 cells, and the inhibition of autophagy by 3-MA or siRNA against LC3 and beclin 1 promoted oridonin-induced apoptosis. Furthermore, p38 and NF-κB were confirmed to have roles in inhibiting apoptosis but promoting autophagy. Moreover, the inhibition of autophagy could reduce oridonin-induced activation of p38. Finally, NF-κB activation was inhibited by blocking the p38 pathway. In conclusion, these findings indicate that oridonin-induced apoptosis can ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    64
    Citations
    NaN
    KQI
    []