Macrophage-derived extracellular vesicles regulates USP5-mediated HDAC2/NRF2 axis to ameliorate inflammatory pain.

2021 
Emerging research has highlighted the capacity of microRNA-23a-3p (miR-23a-3p) to alleviate inflammatory pain. However, the molecular mechanism by which miR-23a-3p attenuates inflammatory pain is yet to be fully understood. Hence, the current study aimed to elucidate the mechanism by which miR-23a-3p influences inflammatory pain. Bioinformatics was initially performed to predict the inflammatory pain related downstream targets of miR-23a-3p in macrophage-derived extracellular vesicles (EVs). An animal inflammatory pain model was established using Complete Freund's Adjuvant (CFA). The miR-23a-3p expression was downregulated in the microglia of CFA-induced mice, after which the inflammatory factors were determined by ELISA. FISH and immunofluorescence were performed to analyze the co-localization of miR-23a-3p and microglia. Interestingly, miR-23a-3p was transported to the microglia via M2 macrophage-EVs, which elevated the mechanical allodynia and the thermal hyperalgesia thresholds in mice model. The miR-23a-3p downstream target, USP5, was found to stabilize HDAC2 via deubiquitination to promote its expression while inhibiting the expression of NRF2. Taken together, the key findings of the current study demonstrate that macrophage-derived EVs containing miR-23a-3p regulates the HDAC2/NRF2 axis by decreasing USP5 expression to alleviate inflammatory pain, which may provide novel therapeutic targets for the treatment of inflammatory pain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    0
    Citations
    NaN
    KQI
    []