Integration of remote sensing, GIS and GPS techniques for dynamic monitoring of land resources in mountainous areas: a case study of Renhe district, Sichuan, China
2005
Geometric and radiometric correction, image processing, information extraction and the integration of remote sensing, GIS and GPS in the specific approach for dynamic monitoring of land resources in mountainous areas are discussed. A synthesized method combining the image difference approach with comparison post classification is employed and a monitoring system based on remote sensing, GIS and GPS are set up. Different illumination conditions are key factors influencing the spectral features in mountainous areas, thus the comprehensive analysis of DEM and NDVI are employed to restrain the influence of terrain. Errors also commonly generate in the registration of different temporal images and much change information is usually lost when the mean-value smoothing template is employed in the image processing in mountainous areas. To reduce the information lost, a regional auto-adaptive smoothing template is employed. As a case study, according to the specific characteristics of mountainous areas, the TM images acquired from both 1994 and 1996 are processed for land change detection in Renhe District, Sichuan. Field experiments for radiometric correction are conducted in the areas of 25 Km2 in this district. The changed areas are precisely surveyed and validated after the fieldwork in which the database of detailed land survey is acquired. Combined with Geological Information System (GIS) technology and Global Position System (GPS), a 3S-based dynamic monitoring system of land resources change information in Renhe District is established, which helps the data renewal and daily management. Finally, the key factors influencing the accuracy of information extracting in mountainous areas are discussed.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI