GMM-based significance decoding
2013
The accuracy of automatic speech recognition systems in noisy and reverberant environments can be improved notably by exploiting the uncertainty of the estimated speech features using so-called uncertainty-of-observation techniques. In this paper, we introduce a new Bayesian decision rule that can serve as a mathematical framework from which both known and new uncertainty-of-observation techniques can be either derived or approximated. The new decision rule in its direct form leads to the new significance decoding approach for Gaussian mixture models, which results in better performance compared to standard uncertainty-of-observation techniques in different additive and convolutive noise scenarios.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
16
References
6
Citations
NaN
KQI