Rejecting Proposed Dense Matter Equations of State with Quiescent Low-mass X-Ray Binaries

2014 
Neutrons stars are unique laboratories for discriminating between the various proposed equations of state of matter at and above nuclear density. One sub-class of neutron stars—those inside quiescent low-mass X-ray binaries (qLMXBs)—produce a thermal surface emission from which the neutron star radius (R {sub NS}) can be measured, using the widely accepted observational scenario for qLMXBs, assuming unmagnetized H atmospheres. In a combined spectral analysis, this work first reproduces a previously published measurement of the R {sub NS}, assumed to be the same for all neutron stars, using a slightly expanded data set. The radius measured is R{sub NS}=9.4±1.2 km. On the basis of spectral analysis alone, this measured value is not affected by imposing an assumption of causality in the core. However, the assumptions underlying this R {sub NS} measurement would be falsified by the observation of any neutron star with a mass >2.6 M {sub ☉}, since radii 99% certainty.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    76
    Citations
    NaN
    KQI
    []