Self-cooling of a movable mirror to the ground state using radiation pressure

2008 
We show that one can cool a micro-mechanical oscillator to its quantum ground state using radiation pressure in an appropriately detuned cavity (self-cooling). From a simple theory based on Heisenberg-Langevin equations we find that optimal self-cooling occurs in the good cavity regime, when the cavity bandwidth is smaller than the mechanical frequency, but still larger than the effective mechanical damping. In this case the intracavity field and the vibrational mechanical mode coherently exchange their fluctuations. We also present dynamical calculations which show how to access the mirror final temperature from the fluctuations of the field reflected by the cavity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    45
    Citations
    NaN
    KQI
    []