State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network

2021 
Abstract To reduce the influence of the measurement data noise on state of charge (SOC) estimation, a novel neural network method is proposed by combining an input data processing method with the conventional gated recurrent unit recurrent neural network (GRU-RNN) method. First, a denoising autoencoder neural network (DAE-NN) is introduced to extract the useful data features by reducing the noise and increasing the dimensions of the battery measurement data. Then, the feature-extracted data is utilized to train the GRU-RNN, which is widely used in SOC estimation. Notice that a good input data processing method plays a key role in the SOC estimation performance and the generalization ability. Therefore, it is not trivial to combine the data processing method (DAE-NN), and the SOC estimation method (GRU-RNN), which is named DAE-GRU. Compared with the traditional GRU-RNN, the new DAE-GRU method shows a better nonlinear mapping relation between the measurement data and the SOC because of the involvement of the DAE-NN. Finally, three different driving cycles are given in the experiment to cross-train and verify the proposed DAE-GRU, GRU-RNN and RNN. Compared with the GRU-RNN and the RNN, it is demonstrated that the proposed DAE-GRU has better accuracy and robustness in the SOC estimation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    7
    Citations
    NaN
    KQI
    []