m6A Regulates Liver Metabolic Disorders and Hepatogenous Diabetes

2020 
N6-methyladenosine (m6A) RNA methylation is one of the most abundant modifications on mRNAs and plays an important role in various biological processes. The formation of m6A is catalysed by a methyltransferase complex containing a key factor methyltransferase-like 3 (Mettl3). However, the functions of Mettl3 and m6A modification in liver lipid and glucose metabolism remain unclear. Here, we show that both Mettl3 expression and m6A level increased in the liver of mice with High Fat Diet (HFD)-induced metabolic disorders, and overexpression of Mettl3 aggravated HFD-induced liver metabolic disorders and insulin resistance. Hepatocyte-specific knockout of Mettl3 significantly alleviated HFD-induced metabolic disorders by slowing weight gain, reducing lipid accumulation and improving insulin sensitivity. Mechanistically, Mettl3 depletion-mediated m6A loss causes extended RNA half-lives of metabolism-related genes, consequently protects mice against HFD-induced metabolic syndrome. Our findings reveal a critical role of Mettl3-mediated m6A in HFD-induced metabolic disorders and hepatogenous diabetes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    1
    Citations
    NaN
    KQI
    []