Current transport mechanisms of InGaN metal-insulator-semiconductor photodetectors

2011 
The authors report on InGaN metal-insulator-semiconductor (MIS) photodetectors with two different insulating layers of Si3N4 and Al2O3 deposited via plasma-enhanced chemical vapor deposition and atomic layer deposition, respectively. The photoresponse spectra show that the metal-Al2O3-InGaN photodetector exhibits an approximately threefold higher photoelectric responsivity and a larger spectral rejection ratio as compared to the metal-Si3N4-InGaN photodetector at a 1 V reverse bias. The current transport mechanisms in MIS photodetectors were investigated in order to determine the difference in photoresponse. The results show that the space charge limited current is a dominant leakage conduction mechanism in the InGaN MIS photodetectors, but this mechanism is mediated by the exponential trap distribution in the metal-Si3N4-InGaN photodetector. This indicates a higher density of trap states in the Si3N4 bulk. A bidirectional Fowler–Nordheim tunneling effect was observed in the metal-Si3N4-InGaN photodetecto...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    12
    Citations
    NaN
    KQI
    []